Journals / JRM / Vol.8, No.7


    No-Aldehydes Glucose/Sucrose-Triacetin-Diamine Wood Adhesives for Particleboard

    Xuedong Xi, Antonio Pizzi*
    Journal of Renewable Materials, Vol.8, No.7, pp. 715-725, 2020, DOI:10.32604/jrm.2020.010882
    (This article belongs to this Special Issue: Renewable and Biosourced Adhesives)
    Abstract A three reagents adhesive system for wood particleboards not containing any aldehyde was developed by the reaction of glucose or sucrose with triacetin (glycerin triacetate) and with hexamethylene diamine. The system was found to be based on the mix of three reactions, namely the reaction of (i) glucose with triacetin, (ii) of the diamine with triacetin, and (iii) of glucose with the diamine. The chemical species formed were identified by Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-ToF) mass spectrometry. Wood particleboard panels were prepared with this adhesive system and gave good internal bond (IB) strength results suitable for… More >


    Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates

    Haikuan Wu1,2, Changwu Liu1,2,*, Song Shi1,2, Kangliang Chen1,2
    Journal of Renewable Materials, Vol.8, No.7, pp. 727-738, 2020, DOI:10.32604/jrm.2020.09589
    (This article belongs to this Special Issue: Renewable materials for sustainable development)
    Abstract In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete, recycled plastic concrete with 0, 3%, 5% and 7% content (by weight) was designed. The compressive strength, splitting tensile strength and the change of mass caused by water absorption during curing were measured. The results show that the strength of concrete is increased by adding recycled plastic into concrete. Among them, the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%. With the increase of plastic content, the development speed of early strength… More >


    Effect of Y-Methacryloxypropyltrimethoxysilane (MPS) and Tetraethoxysilane (TEOS) Towards Preparation of Oil Absorbent Foams from Polyvinyl Alcohol (PVA) Reinforced with Microfibrillated Cellulose (MFC)

    Dzun Noraini Jimat*, Sharifah Shahira Syed Putra, Parveen Jamal, Wan Mohd Fazli Wan Nawawi, Mohammed Saedi Jami
    Journal of Renewable Materials, Vol.8, No.7, pp. 739-757, 2020, DOI:10.32604/jrm.2020.010357
    (This article belongs to this Special Issue: Renewable Polymer Materials and Their Application)
    Abstract Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle. Herein, PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol (PVA) and microfibrillated cellulose (MFC) as a reinforced material from sugarcane bagasse (SCB). In this study, the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane (MPS) and tetraethoxysilane (TEOS). The wetting ability and mechanical strength of the silylated 2,20PVA-MFC foam was greatly enhanced compared with unmodified 2,20PVA-MFC foam. The silane chemicals (MPS and TEOS) had been confirmed grafted on 2,20PVA-MFC foam due to the presence of Si-C and Si-O-C stretching… More >


    3D-Printed PLA Filaments Reinforced with Nanofibrillated Cellulose

    Matea Perić1,*, Robert Putz1, Christian Paulik2
    Journal of Renewable Materials, Vol.8, No.7, pp. 759-772, 2020, DOI:10.32604/jrm.2020.09284
    (This article belongs to this Special Issue: The 10th Conference on Green Chemistry and Nanotechnologies in Polymeric Materials (GCNPM 2019))
    Abstract In the current study poly(lactic acid) PLA composites with a 3 wt% and 5 wt% of nanofibrillated cellulose (NFC) were produced by 3D-printing method. An enzymatic pretreatment coupled with mechanical fibrillation in a twin screw extruder was used to produce high consistency NFC. Scanning electron microscopy (SEM) equipped with Fibermetric software, FASEP fiber length distribution analysis, Furrier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile tests, impact tests and differential scanning calorimetry were used to characterize NFC and PLA/NFC composites. The results of the fiber length and width measurements together with the results of the SEM analysis showed that enzymatic… More >


    Experimental and Theoretical Study on Bonding Properties between Steel Bar and Bamboo Scrimber

    Xiangya Luo, Haiqing Ren, Yong Zhong*
    Journal of Renewable Materials, Vol.8, No.7, pp. 773-787, 2020, DOI:10.32604/jrm.2020.09414
    (This article belongs to this Special Issue: Bio-composite Materials and Structures)
    Abstract To further verify the feasibility of newly designed reinforced bamboo scrimber composite (RBSC) beams used in building construction, the bonding properties between steel bar and bamboo scrimber were investigated by anti-pulling tests. Results indicated that the anti-pulling mechanical properties were signifi- cantly correlated to the diameter, thread form and buried depth of steel bar, forming density of bamboo scrimber as well as the heat treatment of bamboo bundle. There were two failure modes for anti-pulling tests: the tensile fracture and pulling out of steel bar. Both the ultimate load and average shear strength of anti-pulling specimen could be increased greatly… More >


    Combustion Characteristics of Solid Refuse Fuels from Different Waste Sources

    Jong Seong Chae1, Seok Wan Kim2, Tae In Ohm1,*
    Journal of Renewable Materials, Vol.8, No.7, pp. 789-799, 2020, DOI:10.32604/jrm.2020.010023
    Abstract In the production (as co-fuel or alone) of solid refuse fuel (SRF), knowledge about the characteristics of the raw materials is required for an ecofriendly and effective combustion process. SRFs are commonly produced by drying combustible waste and removing incombustible matter, resulting in a higher combustibility as compared to the original waste. However, the characteristics of SRFs may highly vary depending on where and from which materials they were produced. Thus, we investigated the characteristics of various SRFs using thermogravimetric analysis (TGA). As a TGA sample is commonly small, on the scale of milligrams, and, unlike homogeneous fuels, SRFs are… More >


    Adsorption and Desorption Characteristics of Cadmium Ion by Ash-Free Biochars

    Li Fu1,2, Xianying Xu1,2,*, Guiquan Fu2, Renduo Zhang3, Hujun Liu2
    Journal of Renewable Materials, Vol.8, No.7, pp. 801-818, 2020, DOI:10.32604/jrm.2020.09369
    Abstract The aim of this study was to investigate adsorption and desorption characteristics of cadmium ion (Cd(II)) by ash-free biochars and the adsorption mechanism. Biochars were prepared using peanut shell, bamboo, and Sophora japonica Linn. Ash-free biochars were obtained by treating the biochars with acid elution. Adsorption and desorption data from batch experiments were analyzed using the Langmuir and Freundlich models and three adsorption kinetics models (i.e., the Pseudo second-order, Elovich model, and the Intraparticle diffusion models). Results showed that the acid elution improved the pore structure of biochars, increased C content and aromatic functional group content, enhanced biochars hydrophobicity and… More >


    Theoretical Insights into the Inhibition Performance of Three Neonicotine Derivatives as Novel Type of Inhibitors on Carbon Steel

    Yun Wang1, Zhen Wang2, Lei Zhang1,*, Minxu Lu1
    Journal of Renewable Materials, Vol.8, No.7, pp. 819-932, 2020, DOI:10.32604/jrm.2020.09395
    (This article belongs to this Special Issue: Green Coating and Film for Degeneration Protection)
    Abstract The adsorption process of new nicotinic derivatives on Fe (110) surface and diffusion of corrosive particles in inhibition film were studied by quantum chemistry and molecular dynamics simulation, and inhibition mechanism of inhibitor was discussed. The results indicated that the main active sites of three inhibitors are located in N atoms on the five membered ring. The inhibitor YM-1 has the strongest activity of electrophilic reaction, and the adsorption process of inhibitor molecules is polycentric chemisorption. The adsorption energy for inhibitors followed the order of YM-1 > YM-2 > YM-3. The adsorption film YM-1 more effectively impedes the diffusion and… More >


    The Effect of Fibre Length on Flexural and Dynamic Mechanical Properties of Pineapple Leaf Fibre Composites

    A. A. Mazlan1, M. T. H. Sultan1,2,3,*, S. N. A. Safri2, N. Saba2, A. U. M. Shah2, M. Jawaid2
    Journal of Renewable Materials, Vol.8, No.7, pp. 833-843, 2020, DOI:10.32604/jrm.2020.08724
    Abstract The present paper deals with the effect of loading different pineapple leaf fibre (PALF) length (short, mixed and long fibres) and their reinforcement for the fabrication of vinyl ester (VE) composites. Performance of PALF/VE composites was investigated through three-point bending flexural testing and viscoelastic (dynamic) mechanical properties through dynamic mechanical analysis (DMA). DMA results revealed that the long PALF/VE composites displayed better mechanical, damping factor and dynamic properties as compared to the short and mixed PALF/VE composites. The flexural strength and modulus of long PALF/VE composites were 113.5 MPa and 14.3 GPa, respectively. The storage (E′) and loss (E″) moduli… More >

Share Link

WeChat scan