Journals / IASC / Vol.,

Research Article

BEST PAPER 2021

Computational Intelligence for Internet of Medical Things and Big Data Analytics


Submission Deadline: 28 February 2021 (closed)

Abstract

This article has no abstract.

Keywords

The topics of interest include, but are not limited to:
• Computational Intelligence methodologies for medical data analysis;
• Computational Intelligence and block chain assisted medical efficient product designs;
• Computational Intelligence for medical big data analysis;
• Computational Intelligence for medical decision support systems in Parkinson's disease;
• Computational Intelligence for medical decision support systems in heart disease;
• Computational Intelligence for medical decision support systems in cancers diagnostic;
• Advancements in deep learning algorithms in health informatics;
• Computational Intelligence for wearable medical devices;
• Computational Intelligence management in IoMT devices;
• Deep learning for data analytics in body sensor networks;
• Machine learning applied to Healthcare Systems;
• Medical image recognition using AI technologies;
• Machine and deep learning approaches based observation in case of COVID-19;
• Computational methods for COVID-19 prediction and detection;
• Data mining and knowledge discovery in healthcare;
• COVID-19 analysis using Big Data;
• Medical Management system for COVID-19;
• Big Data Analytics for prediction and application for COVID-19;
• AI Methodologies;
• Soft Computing approaches;
• Optimizations methods in complex problems;
• Big Data Analytics for Wireless area network.
  • Research Article

    BEST PAPER 2021

    A Novel Classification Method with Cubic Spline Interpolation

    Husam Ali Abdulmohsin1,*, Hala Bahjat Abdul Wahab2, Abdul Mohssen Jaber Abdul Hossen3 Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 339-355, 2022, DOI:10.32604/iasc.2022.018045
    Abstract Classification is the last, and usually the most time-consuming step in recognition. Most recently proposed classification algorithms have adopted machine learning (ML) as the main classification approach, regardless of time consumption. This study proposes a statistical feature classification cubic spline interpolation (FC-CSI) algorithm to classify emotions in speech using a curve fitting technique. FC-CSI is utilized in a speech emotion recognition system (SERS). The idea is to sketch the cubic spline interpolation (CSI) for each audio file in a dataset and the mean cubic spline interpolations (MCSIs) representing each emotion in the dataset. CSI interpolation is generated by connecting the… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    COVID-19 Diagnosis Using Transfer-Learning Techniques

    Mohammed Faisal1,*, Fahad Albogamy2, Hebah ElGibreen3, Mohammed Algabri3, Syed Ahad M. Alvi1, Mansour Alsulaiman3 Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 649-667, 2021, DOI:10.32604/iasc.2021.017898
    Abstract COVID-19 was first discovered in Wuhan, China, in December 2019 and has since spread worldwide. An automated and fast diagnosis system needs to be developed for early and effective COVID-19 diagnosis. Hence, we propose two- and three-classifier diagnosis systems for classifying COVID-19 cases using transfer-learning techniques. These systems can classify X-ray images into three categories: healthy, COVID-19, and pneumonia cases. We used two X-ray image datasets (DATASET-1 and DATASET-2) collected from state-of-the-art studies and train the systems using deep learning architectures, such as VGG-19, NASNet, and MobileNet2, on these datasets. According to the validation and testing results, our proposed diagnosis… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Investigating the Role of Trust Dimension as a Mediator on CC-SaaS Adoption

    Hiba Jasim Hadi*, Mohd Adan Omar, Wan Rozaini Sheik Osman Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 373-386, 2021, DOI:10.32604/iasc.2021.018207
    Abstract The public sector of Iraq has been struggling from poor management of resources and numerous difficulties that affect its governmental organization’s development, such as financial issues resulting from corruption, insecurity, and the lack of IT resources and infrastructure. Thus, cloud computing Software as a Service (CC-SaaS) can be a useful solution to help governmental organizations increase their service efficiency through the adoption of low-cost technology and provision of better services. The adoption of CC-SaaS remains limited in Iraqi public organizations due to numerous challenges, including privacy and protection, legal policy, and trust. Trust was found to be an effective facilitator… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Optimizing the Software Testing Problem Using Search-Based Software Engineering Techniques

    Hissah A. Ben Zayed, Mashael S. Maashi* Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 307-318, 2021, DOI:10.32604/iasc.2021.017239
    Abstract Software testing is a fundamental step in the software development lifecycle. Its purpose is to evaluate the quality of software applications. Regression testing is an important testing methodology in software testing. The purpose of regression testing is to validate the software after each change of its code. This involves adding new test cases to the test suite and running the test suite as the software changes, making the test suite larger. The cost and time of the project are affected by the test suite size. The challenge is to run regression testing with a smaller number of test cases and… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Predicting COVID-19 Based on Environmental Factors With Machine Learning

    Amjed Basil Abdulkareem1, Nor Samsiah Sani1,*, Shahnorbanun Sahran1, Zaid Abdi Alkareem Alyessari1, Afzan Adam1, Abdul Hadi Abd Rahman1, Abdulkarem Basil Abdulkarem2 Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 305-320, 2021, DOI:10.32604/iasc.2021.015413
    Abstract The coronavirus disease 2019 (COVID-19) has infected more than 50 million people in more than 100 countries, resulting in a major global impact. Many studies on the potential roles of environmental factors in the transmission of the novel COVID-19 have been published. However, the impact of environmental factors on COVID-19 remains controversial. Machine learning techniques have been used effectively in combating the COVID-19 epidemic. However, researches related to machine learning on weather conditions in spreading COVID-19 is generally lacking. Therefore, in this study, three machine learning models (Convolution Neural Network (CNN), ADtree Classifier and BayesNet) based on the confirmed cases… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    ECG Encryption Enhancement Technique with Multiple Layers of AES and DNA Computing

    Jamal Kh-Madhloom1,2,*, Mohd Khanapi Abd Ghani1, Mohd Rizuan Baharon1 Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 493-512, 2021, DOI:10.32604/iasc.2021.015129
    Abstract Over the decades, protecting the privacy of a health cloud using the design of a fog computing network is a very important field and will be more important in the near future. Current Internet of Things (IoT) research includes security and privacy due to their extreme importance in any growing technology that involves the implementation of cryptographic Internet communications (ICs) for protected IC applications such as fog computing and cloud computing devices. In addition, the implementation of public-key cryptography for IoT-based DNA sequence testing devices requires considerable expertise. Any key can be broken by using a brute-force attack with ample… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    An Enhanced Convolutional Neural Network for COVID-19 Detection

    Sameer I. Ali Al-Janabi1, Belal Al-Khateeb2,*, Maha Mahmood2, Begonya Garcia-Zapirain3 Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 293-303, 2021, DOI:10.32604/iasc.2021.014419
    Abstract The recent novel coronavirus (COVID-19, as the World Health Organization has called it) has proven to be a source of risk for global public health. The virus, which causes an acute respiratory disease in persons, spreads rapidly and is now threatening more than 150 countries around the world. One of the essential procedures that patients with COVID-19 need is an accurate and rapid screening process. In this research, utilizing the features of deep learning methods, we present a method for detecting COVID-19 and a screening model that uses pulmonary computed tomography images to differentiate COVID-19 pneumonia from healthy cases. In… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Selection and Optimization of Software Development Life Cycles Using a Genetic Algorithm

    Fatimah O. Albalawi, Mashael S. Maashi* Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 39-52, 2021, DOI:10.32604/iasc.2021.015657
    Abstract In the software field, a large number of projects fail, and billions of dollars are spent on these failed projects. Many software projects are also produced with poor quality or they do not exactly meet customers’ expectations. Moreover, these projects may exceed project budget and/or time. The complexity of managing software development projects and the poor selection of software development life cycle (SDLC) models are among the top reasons for such failure. Various SDLC models are available, but no model is considered the best or worst. In this work, we propose a new methodology that solves the SDLC optimization problem… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Computational Intelligence Approach for Municipal Council Elections Using Blockchain

    Fatmah Baothman*, Kawther Saeedi, Khulood Aljuhani, Safaa Alkatheri, Mashael Almeatani, Nourah Alothman Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 625-639, 2021, DOI:10.32604/iasc.2021.014827
    Abstract Blockchain is an innovative technology that disrupts different industries and offers decentralized, secure, and immutable platforms. Its first appearance is connected with monetary cryptocurrency transactions, followed by adaptation in several domains. We believe that blockchain can provide a reliable environment by utilizing its unique characteristics to offer a more secure, costless, and robust mechanism suitable for a voting application. Although the technology has captured the interest of governments worldwide, blockchain as a service is still limited due to lack of application development experience, technology complexity, and absence of standardized design, architecture, and best practices. Therefore, this study aims to build… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Threshold Parameters Selection for Empirical Mode Decomposition-Based EMG Signal Denoising

    Hassan Ashraf1, Asim Waris1,*, Syed Omer Gilani1, Muhammad Umair Tariq1, Hani Alquhayz2 Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 799-815, 2021, DOI:10.32604/iasc.2021.014765
    Abstract Empirical Mode Decomposition (EMD) is a data-driven and fully adaptive signal decomposition technique to decompose a signal into its Intrinsic Mode Functions (IMF). EMD has attained great attention due to its capabilities to process a signal in the frequency-time domain without altering the signal into the frequency domain. EMD-based signal denoising techniques have shown great potential to denoise nonlinear and nonstationary signals without compromising the signal’s characteristics. The denoising procedure comprises three steps, i.e., signal decomposition, IMF thresholding, and signal reconstruction. Thresholding is performed to assess which IMFs contain noise. In this study, Interval Thresholding (IT), Iterative Interval Thresholding (IIT),… More >

    Graphic Abstract

  • Research Article

    BEST PAPER 2021

    Decision Support System Tool for Arabic Text Recognition

    Fatmah Baothman*, Sarah Alssagaff, Bayan Ashmeel Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 519-531, 2021, DOI:10.32604/iasc.2021.014828
    Abstract The National Center for Education Statistics study reported that 80% of students change their major or institution at least once before getting a degree, which requires a course equivalency process. This error-prone process varies among disciplines, institutions, regions, and countries and requires effort and time. Therefore, this study aims to overcome these issues by developing a decision support tool called TiMELY for automatic Arabic text recognition using artificial intelligence techniques. The developed tool can process a complete document analysis for several course descriptions in multiple file formats, such as Word, Text, Pages, JPEG, GIF, and JPG. We applied a comparative… More >

    Graphic Abstract

Share Link

WeChat scan