Special Issue "Recent Advances in Fluid Mechanics and Thermal Sciences"

Submission Deadline: 31 August 2021 (closed)
Guest Editors
Dr. Jingying Wang, Shandong University, wjy_sdu@sdu.edu.cn

Summary

The independent or coupled processes of fluid flow and heat transfer commonly occur in many science and engineering problems, such as blood circulation, weather forecast, combustion, material processing, heat exchanger and aerodynamic heating, etc. This special issue aims to highlight recent advances in fluid mechanics and thermal sciences (RAFT), and theoretical, numerical and experimental research on any science and engineering problems are all welcome. Original and review articles on RAFT are both encouraged, including but not limited to the following potential topics: 

• Hydrodynamics and Aerodynamics

• Energy and Power Engineering

• Marine Engineering

• Building Environment

• Pollution Control

• Chemistry and Chemical Engineering

• Biofluid and Bioheat

• Advanced Manufacture


Keywords
Hydrodynamics, Aerodynamics, Thermal Engineering, Marine Engineering, Building Environment, Pollution Control, Chemical Engineering, Biofluid, Advanced Manufacture

Published Papers
  • Investigation on the Changing Characteristics of Flow-Induced Noise in a Centrifugal Pump
  • Abstract Centrifugal pumps are widely used in engineering for a variety of applications. A known drawback of these devices is the high-level noise generated during operations, which can affect their stability and adversely influence the entire working environment. By combining the Powell vortex sound theory, numerical simulations and experimental measurements, this research explores the trends of variation and the corresponding underlying mechanisms for the flow-induced noise at various locations and under different operating conditions. It is shown that the total sound source intensity (TSSI) and total sound pressure level (TSPL) in the impeller, in the region between the inlet to the… More
  •   Views:141       Downloads:133        Download PDF

  • Thermal Analysis of a Novel Oil Cooled Piston Using a Fluid-Solid Interaction Method
  • Abstract Thermal load has a vital influence on the normal operation and service life of diesel engines. In this study, the thermal load and oil-cooling effect on diesel engine pistons were investigated by means of computational fluid dynamics. In particular, the flow and heat transfer characteristics of the cooling gallery were determined during the oscillation of the piston. Moreover, the temperature field distribution of the piston with and without the cooling gallery were compared. The results revealed that the cooling gallery has a prominent effect on reducing the thermal load on the piston crown and piston lands. To fully understand the… More
  •   Views:210       Downloads:205        Download PDF

  • Thermo-Mechanical Analysis of the Sealing Performance of a Diesel-Engine Cylinder Gasket
  • Abstract Taking the combustor composite structure of a high-strength diesel engine as the main research object, dedicated tests have been conducted to verify the accuracy of three distinct cylinder gasket pressure simulation models. Using the measured cylinder gasket compression rebound curve, a gasket unit has been designed and manufactured. For this unit, the influence of the bolt pretension, cylinder body and cylinder head material on gasket sealing pressure has been investigated systematically in conditions of thermo-mechanical coupling. The results show that the bolt pretension force is one of the most important factors affecting the cylinder gasket sealing pressure. The change of… More
  •   Views:219       Downloads:297        Download PDF


  • Analysis of Bubble Behavior in a Horizontal Rectangular Channel under Subcooled Flow Boiling Conditions
  • Abstract Experiments on subcooled flow boiling have been conducted using water in a rectangular flow channel. Similar to the coolant channel in internal combustion engines (IC engines), the flow channel in this experiment was asymmetrically heated. Bubble images were captured using a high speed camera from the side view of the channel. The experimental conditions in terms of bulk temperature, bulk velocity, pressure and heat flux ranged from 65°C–75°C, 0.25 m/s–0.75 m/s, 1–1.7 bar and 490 kW/m2–700 kW/m2, respectively. On the basis of these tests, a statistical analysis of the bubble size has been conducted considering a population of 1400 samples.… More
  •   Views:507       Downloads:508        Download PDF