Journals / CMC / Vol.54, No.2
Table of Content


    The Influence of the Imperfectness of Contact Conditions on the Critical Velocity of the Moving Load Acting in the Interior of the Cylinder Surrounded with Elastic Medium

    M. Ozisik1,*, M. A. Mehdiyev2, S. D. Akbarov2,3
    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 103-136, 2018, DOI:10.3970/cmc.2018.054.103
    Abstract The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics. It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction. Moreover, it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied. The focus is on the influence of the mentioned imperfectness… More >


    Joint Bearing Mechanism of Coal Pillar and Backfilling Body in Roadway Backfilling Mining Technology

    Zhengzheng Cao1, Ping Xu1,*, Zhenhua Li2, Minxia Zhang1, Yu Zhao1, Wenlong Shen2
    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 137-159, 2018, DOI:10.3970/cmc.2018.054.137
    Abstract In the traditional mining technology, the coal resources trapped beneath surface buildings, railways, and water bodies cannot be mined massively, thereby causing the lower coal recovery and dynamic disasters. In order to solve the aforementioned problems, the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper. The mechanical model of bearing system of coal pillar and backfilling body is established, by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology. According to the Ritz method in energy variation principle, the elastic solution expression… More >


    Solving Fractional Integro-Differential Equations by Using Sumudu Transform Method and Hermite Spectral Collocation Method

    Y. A. Amer1, A. M. S. Mahdy1, 2, *, E. S. M. Youssef1
    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 161-180, 2018, DOI:10.3970/cmc.2018.054.161
    Abstract In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. The fractional derivatives are described in the Caputo sense. The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations. More >


    Solution of Algebraic Lyapunov Equation on Positive-Definite Hermitian Matrices by Using Extended Hamiltonian Algorithm

    Muhammad Shoaib Arif1, Mairaj Bibi2, Adnan Jhangir3
    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 181-195, 2018, DOI:10.3970/cmc.2018.054.181
    Abstract This communique is opted to study the approximate solution of the Algebraic Lyapunov equation on the manifold of positive-definite Hermitian matrices. We choose the geodesic distance between -AHX - XA and P as the cost function, and put forward the Extended Hamiltonian algorithm (EHA) and Natural gradient algorithm (NGA) for the solution. Finally, several numerical experiments give you an idea about the effectiveness of the proposed algorithms. We also show the comparison between these two algorithms EHA and NGA. Obtained results are provided and analyzed graphically. We also conclude that the extended Hamiltonian algorithm has better convergence speed than the… More >


    Coverless Information Hiding Based on the Molecular Structure Images of Material

    Yi Cao1,2, Zhili Zhou1,2,3, Xingming Sun1,2, Chongzhi Gao4,*
    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 197-207, 2018, DOI:10.3970/cmc.2018.054.197
    Abstract The traditional information hiding methods embed the secret information by modifying the carrier, which will inevitably leave traces of modification on the carrier. In this way, it is hard to resist the detection of steganalysis algorithm. To address this problem, the concept of coverless information hiding was proposed. Coverless information hiding can effectively resist steganalysis algorithm, since it uses unmodified natural stego-carriers to represent and convey confidential information. However, the state-of-the-arts method has a low hidden capacity, which makes it less appealing. Because the pixel values of different regions of the molecular structure images of material (MSIM) are usually different,… More >

Share Link

WeChat scan