Journals / CMC / Vol.42, No.2
Table of Content


    Design, Fabrication, Characterization and Simulation of PIP-SiC/SiC Composites

    S. Zhao1, Zichun Yang1,2, X. G. Zhou3, X. Z. Ling4, L. S. Mora5, D. Khoshkhou6, J. Marrow5
    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 103-124, 2014, DOI:10.3970/cmc.2014.042.103
    Abstract Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied and developed for high temperature and fusion applications. Polymer impregnation and pyrolysis (PIP) is a conventional technique for fabricating SiC/SiC composites. In this research, KD-1 SiC fibers were employed as reinforcements, a series of coatings such as pyrocarbon (PyC), SiC and carbon nanotubes (CNTs) were synthesized as interphases, PCS and LPVCS were used as precursors and SiC/SiC composites were prepared via the PIP method. The mechanical properties of the SiC/SiC composites were characterized. Relationship between the interphase shear strength and the fracture toughness of the composites was established. X-ray… More >


    Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects

    M. Chang1,2,3, Y. C. Chou1,2, P. T. Lin1,2, J. L. Gabayno2,4
    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 125-140, 2014, DOI:10.3970/cmc.2014.042.125
    Abstract Automated optical inspection systems installed in production lines help ensure high throughput by speeding up inspection of defects that are otherwise difficult to detect using the naked eye. However, depending on the size and surface properties of the products such as micro-cracks on touchscreen panels glass cover, the detection speed and accuracy are limited by the imaging module and lighting technique. Therefore the current inspection methods are still delegated to a few qualified personnel whose limited capacity has been a huge tradeoff for high volume production. In this study, an automated optical technology for in-line surface defect inspection is developed… More >


    Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels

    K.B. Mustapha 1,2
    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 141-174, 2014, DOI:10.3970/cmc.2014.042.141
    Abstract This study investigates the sensitivity of the flexural response of a ribconnected system of coupled micro-panels with traction-free surfaces. Idealized as a two-dimensional elastic continuum with a finite transverse stiffness, each micropanels’ behavior is examined within the framework of the biharmonic mathematical model derived from the higher-order, size-dependent strain energy formulation. The model incorporates the material length scale, which bears an associative relationship with the underlying polymer’s averaged Frank elastic constant. Upper estimates of the eigenvalue of the system, under fully clamped edges and simplysupported edges, are determined by the Rayleigh method. The adopted theory for the micro-panel’s behavior takes… More >

Share Link

WeChat scan